National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Terahertz Time-Domain Spectroscopy and Visualization of Biological Objects
Nedvědová, Marie ; Kužel,, Petr (referee) ; Vrba, Jan (referee) ; Provazník, Ivo (advisor)
This thesis deals with the methods of Terahertz (THz) spectroscopy to observe the kinetics of haemostatic materials used for supporting the native mechanism of haemostasis. The theoretical part follows the physical principles of THz time-domain spectroscopy (THz TDS), mentions the advantages and limitations of this method and its application possibilities for the characterization of biomedical materials. Further, there are specified properties of actual haemostats, described principles of their function and usage in practice, including their interaction with the living tissue. There were performed experiments monitoring the kinetics of physiologic reaction of the tissue adhesive based on the cyanoacrylates and absorbable haemostats. The mechanisms of monitored reactions were explained based on the physical-chemical principles that are used also for the kinetic models’ derivation. Modelling of the measured data results in the estimation of the parameters characterizing the observed samples. The most interesting parameter is the time constant of the reaction because of the possibility to compare reaction rates of different types of haemostats. The detailed analysis of this parameter is performed using the means of statistical methods. Tissue adhesive samples were measured by other spectroscopic and microscopic methods to compare the findings with the experimental results of the THz TDS. Data were processed using algorithms designed especially for this experiment and analysed using mathematical methods.
Charge transport in semiconductor nanostructures investigated by time-resolved multi-terahertz spectroscopy
Kuchařík, Jiří ; Němec, Hynek (advisor) ; Pereira, Mauro Fernandes (referee) ; Richter, Ivan (referee)
Terahertz conductivity spectra contain information on charge transport mechanisms and charge confinement on nanometer distances. In this thesis, we make a substantial progress in understanding of terahertz conductivity in several regimes. First, we theoretically investigate linear terahertz conductivity of confined electron gas: while the spectra of degenerate electron gas exhibit geometrical resonances, the response in non-degenerate case smears into a single broad resonance due to the wide distribution of charge velocities. Then, we theoretically and experimentally analyze various TiO2 nanotube layers: their linear charge transport properties strongly depend on the fabrication process, which influences the internal structure of the nanotube walls. In the main part of the thesis, we develop a framework for evaluation of the nonlinear terahertz response of semiconductor nanostructures based on microscopic Monte-Carlo calculations. The nonlinear regime is highly non-perturbative even in moderate fields as illustrated by efficient high harmonics generation. We investigate measurable nonlinear signals for various semiconductor nanostructures; metallic nanoslits filled with nanoelements are the most promising for the experimental observation of terahertz nonlinearities. These nonlinearities per unit charge are...
Terahertz Time-Domain Spectroscopy and Visualization of Biological Objects
Nedvědová, Marie ; Kužel,, Petr (referee) ; Vrba, Jan (referee) ; Provazník, Ivo (advisor)
This thesis deals with the methods of Terahertz (THz) spectroscopy to observe the kinetics of haemostatic materials used for supporting the native mechanism of haemostasis. The theoretical part follows the physical principles of THz time-domain spectroscopy (THz TDS), mentions the advantages and limitations of this method and its application possibilities for the characterization of biomedical materials. Further, there are specified properties of actual haemostats, described principles of their function and usage in practice, including their interaction with the living tissue. There were performed experiments monitoring the kinetics of physiologic reaction of the tissue adhesive based on the cyanoacrylates and absorbable haemostats. The mechanisms of monitored reactions were explained based on the physical-chemical principles that are used also for the kinetic models’ derivation. Modelling of the measured data results in the estimation of the parameters characterizing the observed samples. The most interesting parameter is the time constant of the reaction because of the possibility to compare reaction rates of different types of haemostats. The detailed analysis of this parameter is performed using the means of statistical methods. Tissue adhesive samples were measured by other spectroscopic and microscopic methods to compare the findings with the experimental results of the THz TDS. Data were processed using algorithms designed especially for this experiment and analysed using mathematical methods.
Charge transport in semiconductor nanostructures investigated by time-resolved multi-terahertz spectroscopy
Kuchařík, Jiří ; Němec, Hynek (advisor) ; Pereira, Mauro Fernandes (referee) ; Richter, Ivan (referee)
Terahertz conductivity spectra contain information on charge transport mechanisms and charge confinement on nanometer distances. In this thesis, we make a substantial progress in understanding of terahertz conductivity in several regimes. First, we theoretically investigate linear terahertz conductivity of confined electron gas: while the spectra of degenerate electron gas exhibit geometrical resonances, the response in non-degenerate case smears into a single broad resonance due to the wide distribution of charge velocities. Then, we theoretically and experimentally analyze various TiO2 nanotube layers: their linear charge transport properties strongly depend on the fabrication process, which influences the internal structure of the nanotube walls. In the main part of the thesis, we develop a framework for evaluation of the nonlinear terahertz response of semiconductor nanostructures based on microscopic Monte-Carlo calculations. The nonlinear regime is highly non-perturbative even in moderate fields as illustrated by efficient high harmonics generation. We investigate measurable nonlinear signals for various semiconductor nanostructures; metallic nanoslits filled with nanoelements are the most promising for the experimental observation of terahertz nonlinearities. These nonlinearities per unit charge are...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.